2011.12.12

回帰式の統計モデル

 推定された直線回帰式がどの程度現実のデータに適合しているかを調べるために, 回帰式が従う統計モデルを考える.標本の格データ点, (xiyi ), が,

yiab xieiei 〜 N( 0,σ2 )

であると仮定する.ei は誤差(error),あるいは, 残差(residual)で,直線回帰 式では説明がつかない部分を表し,これが互いに独立に平均 0,分散 σ2 の正規分布に従うと仮定する.誤差の大きさが大きいときは,直線回帰式ではデータが説明できない と考える.

残差分散と回帰係数の標準誤差

 回帰で説明がつかない残差平方和 Se は,

minsqure

で求められる.これの自由度は n−2 であるので(2つの回帰係数分の自由度を除く),回帰の 残差(誤差)分散は,
minsqure
で求められる.

 一般に,Var(yi ) = σ2 であるとき,その定数 倍の分散は,

Var(ayi ) = a2σ2, Var(Σiai yi ) = Σiai 2 σ2

であり,従属変数 y のデータ yi は,

yi 〜 N( ab xi ,σ2 )

と分布するので,回帰係数 b の分散は,
minsqure
となる.この分散の平方根を回帰係数 b の標準誤差という.

回帰係数の標準誤差による t 検定

目的変数 y が説明変数 x との回帰関係にないという 帰無仮説,

H0b = 0,

を考えてみよう.

回帰係数 b の推定値 b^ の分散は,

minsqure
と推定できるので,b^ の標準誤差は, s b と推定 される.これより,回帰係数をその標準誤差で割った t 値が,帰無仮説のもとで,
minsqure
のように,自由度 n−2 の t 分布に従うことを利用して回帰係数の検定が行える.すなわち, 自由度 n−2 の t 分布の 97.5%点を t0 とすると,

|t | > t0 → 帰無仮 説を有意水準 5 %で棄却(回帰関係が有意に認められる)
|t | ≦ t0 → 帰無仮説を棄却しない(回帰関係が認められない)

と定式化できる.
Copyright (C) 2008, Hiroshi Omori. 最終更新:2011年12月 3日